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Abstract
In present work, we extend Lüscher formula-like formalism to few-body system
in a uniform magnetic field with Dirichlet boundary conditions. As a signa-
ture of non-trivial topological systems, the energy spectrum of topological edge
states show up in the gap between allowed energy bands.
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1. Introduction

Study of few-body hadron/nuclear particles interaction and properties of few-body resonances
is one of important subjects in modern physics. Hadron/nuclear particles provide the only
means of understanding quantum chromodynamics (QCD), the underlying theory of quark
and gluon interactions. However, making prediction of hadron/nuclear particle interactions
from first principles is not always straightforward, due to the fact that most of theoretical com-
putations are performed in various traps, for instance, periodic cubic box in lattice quantum
chromodynamics (LQCD). As the result of trapped systems, only discrete energy spectrum is
observed instead of scattering amplitudes. Hence, extracting infinite volume scattering ampli-
tudes from discrete energy spectrum in a trapped system have become an important subject in
LQCD and nuclear physics communities, see e.g. references [1–41]. When the size of a trap is
much larger than the range of interactions, the short-range particles dynamics and long-range
correlation effect due to the trap can be factorized. The connection between trapped system
and infinite volume system are found in a closed form,
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det [cot δ(E) −M(E)] = 0, (1)

where δ(E) refers to the diagonal matrix of infinite volume scattering phase shifts, and the
matrix function M(E) is associated to the geometry and dynamics of trap itself. The for-
mula that has the form of equation (1) is known as Lüscher formula [1] in LCQD and
Busch–Englert–Rzażewski–Wilkens formula [32] in a harmonic oscillator trap in nuclear
physics community.

In preceding work [29], a Lüscher formula-like formalism was presented for a finite volume
two-particle system in a uniform magnetic field. There are number of good reasons why study
of a magnetic system in a finite volume might be interesting and desirable. In a broader content,
external magnetic field plays important roles in cosmology, neutron star physics and heavy-
ion phenomenology, see references [42, 43]. In QCD, magnetic field also produce number of
interesting phenomena, such as, chiral magnetic effect [44–46] and magnetic catalysis which
helps spontaneous breaking of non-abelian chiral symmetry [47, 48]. In addition, Landau level
structure may turn charged ρ meson massless and QCD vacuum into a QCD superconductor
[49]. Few-hadron systems in a uniform magnetic field can be studied by using background-
field methods in lattice QCD [50–53]. The background-field method has already been applied
to the computation of hadron magnetic polarizability in LQCD with the pion mass around
500 MeV [54, 55]. The magnetic polarizability of hadrons in LQCD are extracted by the mass
shifts of particles measured both in the absence and presence of magnetic field. With heavy
pion mass, the hadron resonances, such as ρ and Δ(1232), become stable particles. Masses of
ρ and Δ(1232) are below ππ and πN thresholds respectively, hence decay of resonances can
be safely neglected in LQCD computation. With lighter pion mass approaching physical pion
mass around 140 MeV, these resonant hadron particles can no longer be treated as point-like
particles, the few-body dynamics and hadron–hadron interactions may start playing signif-
icant roles. In addition to magnetic polarizability of hadron particles calculation in LQCD,
the QCD phase structure in the presence of magnetic field, Landau level, topological Berry
phase and related phenomena also have been active subjects of lattice QCD studies in recent
years [56–61].

In LQCD simulation, periodic boundary condition has been a popular choice, which has
the advantage of preserving discrete translational symmetry. In addition to periodic boundary
condition, other boundary conditions have also been explored and used in LQCD for vari-
ous purposes and applications, for example, using Dirichlet boundary condition (hard wall
boundary condition) in recent LQCD studies of chiral symmetry restoration in [62] and mag-
netic/electric polarizability of hadrons in [54, 63–65]. In particular, Dirichlet boundary con-
dition shows some advantages over periodic boundary in the LQCD study of magnetic and
electric polarizability of hadron particles. For instance, Dirichlet boundary condition allows
the implementation of nonquantized and small values of the uniform magnetic and electric
field on lattice, see detailed discussion in references [54, 63–65].

In current work, Lüscher formula-like quantization conditions of two hadrons magnetic sys-
tem with Dirichlet conditions are derived and presented. We will show that for a short-range
interaction, the ultimate quantization condition with various boundary conditions, such as peri-
odic and Dirichlet boundary conditions, can all be formulated in a similar form of equation (1).
The boundary condition and finite volume effects are described by generalized magnetic zeta
function. Such formalism may potentially be useful for the study of magnetic polarizability
of hadron resonances when the few-body effect must be considered and the resonance can no
longer be treated as a point-like particle, where Dirichlet boundary condition may be more
preferable.
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We also remark that although the LQCD computation with various boundary conditions has
been our primary concerns in present work, it is worth mentioning that in the study of magnetic
properties of quark–gluon and hadron matters and its response to external magnetic field, the
effective QCD-like models, such as the Polyakov loops chiral linear-sigma model (PLSM) and
Polyakov Nambu–Jona–Lasinio model (PNJL), also play the significant roles, see references
[66–77]. To some extend, PLSM and PNJL are similar to LQCD but the size of a trap could
be computationally better controlled.

The paper is organized as follows. The Lüscher formula-like quantization conditions with
Dirichlet boundary conditions for two hadrons magnetic system are derived and presented in
section 2. The discussions and summary are given in section 3.

2. Lüscher formula-like quantization conditions with Dirichlet boundary
conditions

For a short-range interaction, the quantization conditions with various boundary conditions can
all be presented in Lüscher formula-like form [1]. The details of derivation of Lüscher formula-
like quantization conditions in a 2D plane with a periodic boundary condition can be found
in appendix A, which applies to Dirichlet or other boundary conditions as well. Assuming
S-wave dominance, the short-range interaction can be modeled by a contact interaction, the
quantization condition is thus easily obtained,

cot δ0(ε) = M(2D)
B (0, 0; ε), (2)

where the magnetic zeta function, M(2D)
B , describes the propagation of particles in a uniform

magnetic field with proper boundary conditions. The S-wave phase shift, δ0, is associated with
the short-range interaction between particles.

In follows, we first present the analytic solutions of 2D magnetic Green’s functions with
open, half open and hard wall boundary conditions in one direction and periodic in another in
section 2.1. The associated magnetic zeta functions are given in section 2.2. The topological
edge solutions exist in the 2D magnetic system with Dirichlet boundary condition, which may
appear in the gap between bulk energy bands even with an impenetrable wall on the boundary.
The spectrum of edge states vs bulk states is discussed in section 2.3.

2.1. Solutions of 2D magnetic Green’s function with Dirichlet boundary conditions

Considering the propagation of two spinless hadron particles in a uniform magnetic field, the
non-relativistic 2D magnetic Green’s function with open, half open and hard wall boundary
conditions in x-direction, but remaining the periodic boundary condition in y-direction, all have
the form of

G
(kyey ,2D)
B (ρ,ρ′; ε) =

1
L

∑
py=

2πny
L +ky , n y∈Z

eipy(ry−r′y) × G(1D)
B

(
rx +

py

qB
, r′x +

py

qB
; ε

)
,

where

ρ = rxex + ryey, ρ′ = r′xex + r′yey

are relative coordinates defined in x–y plane. The wave vector ky is related to center of mass
(CM) momentum of two particles PB by ky =

PB,y
2 . The 1D Green’s function, G(1D)

B , satisfies
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differential equation(
ε+

∂2
rx

2μ
− (qB)2

2μ
r2

x

)
G(1D)

B (rx, r′x; ε) = δ(rx − r′x). (4)

Before the boundary condition is implemented, equation (4) is parabolic cylinder equation
type [78], the homogeneous parabolic cylinder equation has two independent solutions called
parabolic cylinder functions [78]:

U

(
−με

qB
,±

√
2qBrx

)
.

Therefore in general, the solution of G(1D)
B is given by

G(1D)
B (rx , r′x; ε)

=

[
aU

(
−με

qB
,
√

2qBrx<

)
+ bU

(
−με

qB
,−

√
2qBrx<

)]
×
[

cU

(
−με

qB
,
√

2qBrx>

)
+ dU

(
−με

qB
,−

√
2qBrx>

)]
, (5)

where rx< and rx< refer to the lesser and greater of (rx, r′x) respectively. All coefficients
(a, b, c, d) are determined by boundary conditions and discontinuity relation

∂rx G(1D)
B (rx, r′x; ε)|rx=r′x+0

rx=r′x−0 = 2μ. (6)

2.1.1. Open boundary in x-direction. With open boundary condition in x-direction, using
properties of parabolic cylinder functions,

U

(
−με

qB
, z

)
z→∞→ 0, U

(
−με

qB
,−z

)
z→∞→ ∞, (7)

the coefficients a = 0 and d = 0. Also using equation (6) and relation

W
{

U

(
−με

qB
, z

)
, U

(
−με

qB
,−z

)}
=

√
2π

Γ
(

1
2 − με

qB

) , (8)

where W( f , g) = f g′ − g f ′ stands for the Wronskian of two functions, so we obtain

G(Open,1D)
B (rx, r′x; ε) = −2μ

Γ
(

1
2 − με

qB

)
√

2qB
√

2π

× U

(
−με

qB
,−

√
2qBrx<

)
U

(
−με

qB
,
√

2qBrx>

)
. (9)

Considering another representation of open boundary condition 2D magnetic Green’s
function,
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G
(Open, kyey, 2D)
B (ρ,ρ′; ε) =

∑
ny

e−ikynyLG(∞, 2D)
B (ρ+ nyLey,ρ

′; ε), (10)

we can also conclude that in addition to equation (A13), another representation of G(∞,2D)
B is

given by

G(∞,2D)
B (ρ,ρ′; ε) = −2μ

Γ
(

1
2 − με

qB

)
√

2qB
√

2π

∫ ∞

−∞

dpy

2π
eipy(ry−r′y)

× U

(
−με

qB
,−

√
2qB

(
rx< +

py

qB

))
× U

(
−με

qB
,
√

2qB

(
rx> +

py

qB

))
. (11)

Similar result and some interesting discussion of quasi-classical approximation of G(∞,2D)
B can

be found in [79].

2.1.2. Half open boundary in x-direction. Next, let us consider only putting one hard wall on
one side, e.g.

G
(Half,kyey ,2D)
B (ρ,ρ′; ε)|

rx>� nqL
2 ex

= 0. (12)

Using equation (7) again, we can eliminating U(− με
qB ,

√
2qBrx<) term in equation (5). The rest

of coefficients can be determined by implementing boundary condition and using equation (8)
again, we thus find

G(Half,1D)
B (rx , r′x; ε) = −2μ

Γ
(

1
2 − με

qB

)
√

2qB
√

2π

× U

(
−με

qB
,−

√
2qBrx<

)[
U

(
−με

qB
,
√

2qBrx>

)

−
U
(
− με

qB ,
√

2qBL+
2

)
U
(
− με

qB ,−
√

2qB L+
2

)U

(
−με

qB
,−

√
2qBrx>

)⎤⎦ , (13)

where

L+

2
=

nqL
2

+
py

qB
. (14)

2.1.3. Hard wall boundary in x-direction. At last, let us consider putting hard walls on both
sides, e.g.

G
(h.w.,kyey ,2D)
B (ρ,ρ′; ε)|

rx<�− nqL
2 ex , rx>� nqL

2 ex
= 0. (15)

Again, implementing boundary condition and using equation (8), we find
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G(h.w.,1D)
B (rx , r′x; ε) =

2μ
Γ
(

1
2−

με
qB

)
√

2qB
√

2π

U
(
− με

qB ,−
√

2qB
L+

2

)
U
(
− με

qB ,
√

2qB
L+

2

) −
U
(
− με

qB ,
√

2qB
L−
2

)
U
(
− με

qB ,−
√

2qB
L−
2

)

×

⎡⎣U

(
−με

qB
,−

√
2qBrx<

)

−
U
(
− με

qB ,
√

2qBL−
2

)
U
(
− με

qB ,−
√

2qB L−
2

)U

(
−με

qB
,
√

2qBrx<

)⎤⎦

×

⎡⎣U

(
−με

qB
,−

√
2qBrx>

)

−
U
(
− με

qB ,−
√

2qB L+
2

)
U
(
− με

qB ,
√

2qBL+
2

) U

(
−με

qB
,
√

2qBrx>

)⎤⎦ , (16)

where

L−
2

=
nqL
2

− py

qB
. (17)

2.2. Solutions of 2D magnetic zeta functions with Dirichlet boundary conditions

It has been well-known in condensed matter physics that Bloch particles in a magnetic field
exhibit the non-trivial topological properties, see reference [80] and also appendix B. For
instance, the magnetic field forces a wavefunction of Bloch particles to develop vortices in
crystal momentum space [81]. The phase of wavefunction of Bloch particles is not well-defined
throughout entire magnetic Brillouin zone, which is associated to a non-trivial topology of a
magnetic system. When crystal momentum of a Bloch particle is forced to circle around the
vortices, non-zero vorticity is ultimately related to quantized Hall conductance [81, 82].

One of important consequences of a non-trivial topological system is the existence of gap-
less topological edge states that occur in the energy gap between the bulk bands [83–85]. The
study of conventional edge or surface states in fact has a long history [86, 87], the boundary
effect may cause the localization of state near the edge or surface of material. Though the
energy spectrum of a system with a penetrable boundary may protrude into the gap between
bulk bands, for topologically trivial systems, the eigen-energies of an impenetrable wall on
boundary are only situated on the edge of bulk energy bands. This fact can be illustrated with a
2D non-magnetic system with different boundary conditions. In the absence of magnetic field,
the 2D finite volume Green’s function that satisfies periodic boundary conditions in both x and
y directions is given by

G(L,k,2D)
0 (ρ; ε) =

1
L2

∑
p= 2πn

L +k,n∈Z2

eip·ρ

ε− p2

2μ

, (18)

compared with
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G
(h.w.,kyey ,2D)
0 (ρ,ρ′; ε) =

1
L

∑
py=

2πny
L +ky ,ny∈Z

eipy(ry−r′y)

× 2μ
sin

√
2με− p2

y

(
ry> − L

2

)
sin

√
2με− p2

y

(
ry< + L

2

)√
2με− p2

y sin
√

2με− p2
yL

, (19)

which satisfies hard wall boundary condition in x-direction but still remains periodic in
y-direction,

G
(h.w.,kyey ,2D)
0 (ρ,ρ′; ε)|ρ,ρ′=± L

2 ex
= 0. (20)

Therefore, with a contact interaction,

V(ρ) = V0δ(ρ),

and using equation (18) and identity

1
L

∑
px=

2πnx
L +kx , nx∈Z

1
q2 − p2

x
=

cot q−kx
2 L + cot q+kx

2 L

4q
, (21)

the bulk energy band solutions with periodic boundary condition along both directions are
determined by

1
V0

=
2μ
L

ny∈Z∑
py=

2πny
L +ky

cot
√

2με−p2
y−kx

2 L + cot
√

2με−p2
y+kx

2 L

4
√

2με− p2
y

. (22)

Using equation (19), the edge solutions with hard wall boundary condition along x-direction
are determined by

1
V0

=
2μ
L

∑
py=

2πny
L +ky, ny∈Z

cot
√

2με−p2
y− π

L
2 L

2
√

2με− p2
y

. (23)

We can see clearly that for a fixed ky and V0, the edge solution is only part of bulk energy band
solutions with special value of wave vector kx =

π
L , which indeed sit at the edge of bulk energy

bands. On the contrary, even with impenetrable walls on the boundary, the topological edge
states may appear in the gap between bulk energy bands.

For a magnetic two-hadron systems in general, the energy spectrum for various boundary
conditions must be generated by using equation (A55). The topological edge states in gaps
between allowed energy bands in fact can be illustrated by only considering a simple case
with only a single scatter placed at origin (nq = 1). Even so, it is sufficient to demonstrate the
difference between edge state solutions and bulk state solutions.

The magnetic zeta function for various boundary condition can be defined similarly to
equation (A54). With only a single scatter placed at origin, the generalized magnetic zeta
functions for various boundary conditions in x-direction thus all have the form of
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M(kyey,2D)
B (0, 0; ε) = − 4

2μ
1
L

∑
py=

2πny
L +ky,ny∈Z

G(1D)
B

(
py

qB
,

py

qB
; ε

)

+
1
π

(
2γE + ln

μερ2

2

)
|ρ→0. (24)

2.2.1. Generalized magnetic zeta function for open boundary condition in x-direction. The
generalized magnetic zeta functions for open boundary condition in x-direction is thus
explicitly given by

M(Open, kyey ,2D)
B (0, 0; ε) = 4

Γ
(

1
2 − με

qB

)
√

2qB
√

2π

1
L

∑
py=

2πny
L +ky ,ny∈Z

× U

(
−με

qB
,−

√
2qB

py

qB

)
U

(
−με

qB
,
√

2qB
py

qB

)
+

1
π

(
2γE + ln

μερ2

2

)
|ρ→0. (25)

The infinite momentum sum in equation (25) is UV divergent that is cancelled out by UV diver-
gent part in the second term. The UV cancellation can be made explicitly by using Kummer
function representation of infinite volume magnetic Green’s function and equation (25), thus
we find

M(Open,kyey ,2D)
B (0, 0; ε) = M(∞,2D)

B (0, 0; ε)

+
1
π

∑
ny �=0

e−ikynyL e−
qB
4 |nyLey |2

× Γ

(
1
2
− με

qB

)
U

(
1
2
− με

qB
, 1,

qB
2
|nyLey|2

)
, (26)

where M(∞,2D)
B is defined in equation (A58).

2.2.2. Generalized magnetic zeta function for half open boundary condition in x-direction. For
half open boundary condition in x-direction, the UV divergence in infinite momentum sum can
be regularized by subtracting by M(Open,ky ,2D)

B , thus we find,

M(Half,kyey,2D)
B (0, 0; ε)

= M(Open,kyey ,2D)
B (0, 0; ε) − 4

2μ
1
L

∑
py=

2πny
L +ky ,ny∈Z

×
[

G(Half,1D)
B

(
py

qB
,

py

qB
; ε

)
− G(Open,1D)

B

(
py

qB
,

py

qB
; ε

)]
. (27)
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Figure 1. Bulk energy bands (filled with black curves) in finite volume with mag-
netic periodic boundary condition in both x- and y-direction is generated by varying
kx in magnetic Brillouin zone: kx ∈ [0, 2π

nqL ] in finite volume magnetic zeta function

M(L,k,2D)
B (0, 0; ε) defined in equation (A54). The wave vector in y-direction, ky, is fixed at

ky =
π

2nqL . Compared with M(Open,kyey,2D)
B (0, 0; ε) in equation (26) (red curve) with open

boundary condition along x-direction and M(h.w.,kyey,2D)
B (0, 0; ε) in equation (28) (blue

curve) with a hard wall boundary condition in x-direction. The parameters are chosen
as: L = 5, and nq = np = 1.

2.2.3. Generalized magnetic zeta function for hard wall boundary condition in x-direction.

Similarly, for hard wall boundary condition in x-direction, by subtracting with M(Open,ky ,2D)
B ,

the UV regularized magnetic zeta function is given by

M(h.w.,kyey ,2D)
B (0, 0; ε)

= M(Open,kyey ,2D)
B (0, 0; ε) − 4

2μ
1
L

∑
py=

2πny
L +ky ,ny∈Z

×
[

G(h.w.,1D)
B

(
py

qB
,

py

qB
; ε

)
− G(Open,1D)

B

(
py

qB
,

py

qB
; ε

)]
. (28)

2.3. Energy spectrum of edge states vs bulk energy bands

The bulk states are related to the periodic boundary condition solutions in both directions. In
LQCD, CM momenta of two particles, PB, become discrete due to the constraints of periodic
boundary condition. Hence it also yields discrete energy spectra. When discrete total momen-
tum PB or k = PB

2 is varied continuously, also see detailed discussion in appendix B, the
discrete energy spectra are smeared into isolated bulk energy bands. For a topological triv-
ial system, these bands are separated by forbidden gaps due to particles interaction. On the
contrary, for a non-trivial topological system, such as a magnetic system, the non-trivial topo-
logical edge states show up in forbidden gaps when periodic boundary condition is replaced by
Dirichlet boundary condition. Hence the isolated energy bands can be connected continuously
and smoothly by topological edge states. When k is further taken into a complex plane, the
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real solutions in the gaps can also be found that provides an alternative way of crossing over
gap and connecting two isolated bands smoothly. The discussion of analytic continuation of
solutions in forbidden gaps can be found in appendix C.

For periodic boundary conditions in both x-and y-direction, with a fixed ky, the bulk energy
bands can be generated by treating kx as a free parameter in finite volume magnetic zeta func-
tion M(L,k,2D)

B (0, 0; ε) that is defined in equation (A54), see figure 1. The bulk energy bands
are separated by gaps in between. The edge states are produced by replacing the periodic
boundary condition in x-direction by a hard wall boundary condition, M(h.w.,kyey,2D)

B (0, 0; ε)
in equation (28). As shown in figure 1, unlike topologically trivial edge states, the solutions
of edge states of a magnetic system not only show up in the gap, but also punch through bulk
energy bands.

3. Summary

In summary, the formalism of a finite volume magnetic two-hadron system with Dirichlet
boundary condition in one spatial direction is derived, and quantization condition under the
assumption of contact interaction potential is obtained and presented in current work. The
formalism may be useful in the future lattice study of magnetic polarizability of hadron reso-
nances, and also it may be useful for the study of phase structure of QCD, such as, how the mag-
netic field may turn charged hadron resonances massless and vacuum into a superconductor,
etc.
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Appendix A. Finite volume dynamics of a magnetic system in a plane

The dynamics of relative motion of two-particle system in a uniform magnetic field is described
by the finite volume Lippmann–Schwinger (LS) equation,

ψ

(
L,

PB
2

)
ε (r) =

∫
L3

B

dr′G

(
L,

PB
2

)
B (r, r′; ε)V (L)(r′)ψ

(
L,

PB
2

)
ε (r′), (A1)

where the volume integration over the enlarged magnetic unit cell,

nqLex × Ley × Lez,

is defined by ∫
L3

B

dr′ =
∫ nqL

2

− nqL
2

dr′x

∫ L
2

− L
2

dr′y

∫ L
2

− L
2

dr′z. (A2)
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The wavefunction satisfies the magnetic periodic boundary condition,

ψ

(
L,

PB
2

)
ε (r+ nBL) = ei

PB
2 ·nBL e−iqBryex ·nBLψ

(
L,

PB
2

)
ε (r), (A3)

where

nB = nxnqex + nyey + nzez, nx,y,z ∈ Z, (A4)

and

PB =
2π
L

(
nx

nq
ex + nyey + nzez

)
, nx,y,z ∈ Z. (A5)

The finite volume magnetic Green’s function G
(L,

PB
2 )

B satisfies equation,

(
ε− Ĥr

)
G

(
L,

PB
2

)
B (r, r′; ε) =

∑
nB

e−i
PB

2 ·nBL eiqBryex ·nBLδ(r− r′ + nBL), (A6)

where the Hamiltonian of relative motion of two charged particles in a uniform magnetic field
is given by

Ĥr = − (∇r + iqA(r))2

2μ
. (A7)

q and μ stand for effective charge and mass of two particles respectively. The uniform magnetic
field is chosen along z-axis, B = Bez, and Landau gauge for vector potential is adopted in this
work,

A(x) = B(0, x, 0). (A8)

To warrant a state that is translated through a closed path remain same, the magnetic flux
qBnqL2 through the surface of an enlarged magnetic unit cell in x–y plane must be quantized:

qBnqL2 = 2πnp, (A9)

where np and nq are two relatively prime integers.

The analytic solutions of G
(L,

PB
2 )

B can be constructed from its infinite volume counterpart
G(∞)

B by,

G

(
L,

PB
2

)
B (r, r′; ε) =

∑
nB

G(∞)
B (r, r′ + nBL; ε)ei

PB
2 ·nBL e−iqBr′yex ·nBL

=
∑
nB

e−i
PB

2 ·nBL eiqBryex ·nBLG(∞)
B (r+ nBL, r′; ε), (A10)

where the infinite volume magnetic Green’s function G(∞)
B satisfies equation,(

ε− Ĥr

)
G(∞)

B (r, r′; ε) = δ(r− r′). (A11)

11
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The 3D analytic expression of G(∞)
B is related to 2D magnetic Green’s function that is defined

in x–y plane, G(∞,2D)
B , by

G(∞)
B (r, r′; ε) =

∫ ∞

−∞

dpz

2π
G(∞,2D)

B

(
ρ,ρ′; ε− p2

z

2μ

)
eipz(rz−r′z), (A12)

where

ρ = rxex + ryey, ρ′ = r′xex + r′yey

are relative coordinates defined in x–y plane. The various representations of 2D infinite volume
magnetic Green’s function, G(∞,2D)

B , are given by

G(∞,2D)
B (ρ,ρ′; ε)

=

∞∑
n=0

∫ ∞

−∞

dpy

2π

φn

(
rx +

py
qB

)
φ∗

n

(
r′x +

py
qB

)
eipy(ry−r′y)

ε− qB
μ

(
n + 1

2

)
=

qB
2π

e−
iqB
2 (rx+r′x )(ry−r′y)

∞∑
n=0

Ln

(
qB
2 |ρ− ρ′|2

)
e−

qB
4 |ρ−ρ′|2

ε− qB
μ

(
n + 1

2

)
= −2μ

4π
e−

iqB
2 (rx+r′x )(ry−r′y) e−

qB
4 |ρ−ρ′ |2Γ

(
1
2
− με

qB

)
× U

(
1
2
− με

qB
, 1,

qB
2
|ρ− ρ′|2

)
, (A13)

where φn(rx) is eigen-solution of 1D harmonic oscillator potential,

φn(rx) =
1√
2nn!

(
qB
π

) 1
4

e−
qB
2 r2

x Hn(
√

qBrx). (A14)

Hn(x), Ln(x) and U(a, b, z) are standard Hermite polynomial, Laguerre polynomial and Kum-
mer function respectively [78].

From this point on, all the discussions will be restricted in x–y plane, the purpose of this
is only to simplify the technical presentations. The conclusions can in principle be extended
into 3D as well by using relation in equation (A12). In this section, the dynamical equations
of a magnetic system in a plane will be reformulated in terms of new basis functions that
satisfy magnetic periodic boundary conditions. In terms of these magnetic periodic basis func-
tions, reaction amplitudes may be introduced, and LS equation of reaction amplitudes is thus
obtained. The relation to Harper’s equation is presented when a specific type of potential is con-
sidered. At last, the quantization conditions in 2D plane with contact interactions are presented
and discussed.

In x–y plane, similar to equation (A1), the finite volume LS equation in 2D is given by

ψ

(
L,

PB
2 ,2D

)
ε (ρ) =

∫
L2

B

dρ′G

(
L,

PB
2 ,2D

)
B (ρ,ρ′; ε)V (L)(ρ′)ψ

(
L,

PB
2 ,2D

)
ε (ρ′), (A15)

where the volume integration over the magnetic unit cell is defined by∫
L2

B

dρ′ =

∫ nqL
2

− nqL
2

dr′x

∫ L
2

− L
2

dr′y. (A16)

12
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One of analytic expression of finite volume 2D magnetic Green’s function is explicitly
given by

G

(
L,

PB
2 ,2D

)
B (ρ,ρ′; ε)

=

∞∑
n=0

∑
nx∈Z

e−i
(

PBx
2 −qBry

)
nxnqL 1

L

∑
py=

2πny
L +

PBy
2 ,ny∈Z

×
φn

(
rx + nxnqL +

py
qB

)
φ∗

n

(
r′x +

py
qB

)
eipy(ry−r′y)

ε− qB
μ

(
n + 1

2

) . (A17)

By splitting lattice sum of ny in ky in equation (A17) using identity,

∑
ny∈Z

f (ny) =
np−1∑
α=0

∑
ny∈Z

f (npny + α), (A18)

and also performing a shifting in lattice sum of nx: nx → nx − ny, the finite volume 2D magnetic
Green’s function thus can also be written as

G

(
L,

PB
2 ,2D

)
B (ρ,ρ′; ε) =

∞∑
n=0

np−1∑
α=0

χ

(
PB

2

)
n,α (ρ)χ

(
PB

2

)
∗

n,α (ρ′)

ε− qB
μ

(
n + 1

2

) , (A19)

where

χ

(
PB

2

)
n,α (ρ) =

1√
L

∑
nx∈Z

φn

(
rx +

2π(npnx+α)
L +

PBy
2

qB

)
e−i

PBx
2 nxnqL

× e
i

(
2π(npnx+α)

L +
PBy

2

)
ry
. (A20)

The χ
(
PB

2 )
n,α (ρ) functions are solutions of Schrödinger equation with degeneracy of np for a fixed

n value, (
qB
μ

(
n +

1
2

)
− Ĥρ

)
χ

(
PB

2

)
n,α (ρ) = 0,

α = 0, 1, . . . , np − 1,

(A21)

and they too satisfy magnetic periodic boundary condition,

χ

(
PB

2

)
n,α (ρ+ nBL) = ei

PB
2 ·nBL e−iqBryex ·nBLχ

(
PB

2

)
n,α (ρ). (A22)

Using orthogonality relation of 1D harmonic oscillator basis functions,∫ ∞

−∞
drxφn(rx)φ∗

n′(rx) = δn,n′ , (A23)

13
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and also completeness of 1D harmonic oscillator basis

∞∑
n=0

φn(rx)φ∗
n(r′x) = δ(rx − r′x), (A24)

one can show easily that χ(PB)
n,α (ρ) functions are orthogonal,∫

L2
B

dρχ

(
PB

2

)
n,α (ρ)χ

(
PB

2

)
∗

n′,α′ (ρ) = δα,α′δn,n′ , (A25)

and form a complete magnetic periodic basis as well,

∞∑
n=0

np−1∑
α=0

χ

(
PB

2

)
n,α (ρ)χ

(
PB

2

)
∗

n,α (ρ′)

=
∑
nB

e−i
PB

2 ·nBL eiqBryex ·nBLδ(ρ− ρ′ + nBL). (A26)

Therefore, in presence of magnetic field, it is more convenient to use χ
(
PB

2 )
n,α (ρ) as basis func-

tions instead of plane wave, such as eik·ρ with k = 2πn
L + P

2 and n ∈ Z
2, which are common

choice in finite volume.

A.1. Finite volume reaction amplitudes of a magnetic system

In absence of magnetic field, the momentum representation of finite volume LS equation
normally has the form of

T

(
P
2

)
p (ε) =

1
L2

∑
p′

Ṽp,p′

ε− p′2

2μ

T

(
P
2

)
p′ (ε), (A27)

where

(p,p′) ∈ 2πn
L

+
P

2
, n ∈ Z

2,

and P = 2πd
L ,d ∈ Z

2 represents the total momentum of particles system. The finite volume

scattering amplitude T
( P2 )
p (ε) amplitudes and matrix element of potential are defined in terms

of plane wave basis by

T

(
P
2

)
p (ε) = −

∫
L2

dρ′ e−ip·ρV (L)(ρ′)ψ

(
L,P2 ,2D

)
ε (ρ′),

Ṽp,p′ =

∫
L2

dρ e−ip·ρV (L)(ρ)eip′·ρ, (A28)

see e.g. reference [25].
Similarly, with the magnetic field on, the finite volume reaction amplitude may be intro-

duced in terms of χ
(
PB

2 )
n,α (ρ) basis functions by

T

(
PB

2

)
n,α (ε) = −

∫
L2

B

dρ′χ

(
PB

2

)
∗

n,α (ρ′)V (L)(ρ′)ψ

(
L,

PB
2 ,2D

)
ε (ρ′). (A29)
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Using equation (A19), the representation of LS equation (A15) in terms of finite volume
reaction amplitudes is thus obtained

T

(
PB

2

)
n,α (ε) =

∞∑
n′=0

np−1∑
α′=0

V

(
PB

2

)
n,α;n′,α′

ε− qB
μ

(
n′ + 1

2

)T

(
PB

2

)
n′,α′ (ε), (A30)

where

V

(
PB

2

)
n,α;n′,α′ =

∫
L2

B

dρχ

(
PB

2

)
∗

n,α (ρ)V (L)(ρ)χ

(
PB

2

)
n′,α′ (ρ). (A31)

Hence, the energy spectrum of a magnetic system may be determined from homogenous
equation, equation (A30), by

det

⎡⎢⎣δn,α;n′,α′ −
V

(
PB

2

)
n,α;n′,α′

ε− qB
μ

(
n′ + 1

2

)
⎤⎥⎦ = 0. (A32)

A.2. Relation to Harper’s equation

In this subsection, we will show how the well-known Harper’s equation [82, 88] is obtained
from equation (A30), when a specific type of potential is considered,

V (L)(ρ) = V1 cos
2πrx

L
+ V2 cos

2πry

L
. (A33)

Thus, the matrix element of potential term is given by

V

(
PB

2

)
n,α;n′,α′ = δα,α′

e
−i

2πα
L +

PBy
2

L
2π qB + (−1)n+n′e

i
2πα

L +
PBy

2
L

2π qB

2
V (1)

n,n′

+
δα,α′+1V (2,−)

n,n′ + δα,α′−1V (2,+)
n,n′

2
, (A34)

where

V (1)
n,n′ = V1

∫ ∞

−∞
drxφ

∗
n(rx)ei 2πrx

L φn′ (rx),

V (2,±)
n,n′ = V2

∫ ∞

−∞
drxφ

∗
n

(
rx ±

1
L

2π qB

)
φn′(rx).

(A35)

Redefining reaction amplitude by

T

(
PB

2

)
n,α (ε) =

(
ε− qB

μ

(
n +

1
2

))
d

(
PB

2

)
n,α (ε)ei

PBx
2

2π
L α

qB , (A36)

and also adopting nearest neighbour approximation:

V (1)
n,n′ 
 δn,n′V

(1)
n , V (2,±)

n,n′ 
 δn,n′V
(2)
n , (A37)
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the LS equation (A30) can thus be turned into Harper’s equation [82, 88],(
ε− qB

μ

(
n +

1
2

))
d

(
PB

2

)
n,α (ε)

= V (1)
n cos

(
2πα

L +
PBy

2
L

2πqB

)
d

(
PB

2

)
n,α (ε)

+ V (2)
n

(ε)e
−i

PBx
2

L
2π qB d

(
PB

2

)
n,α−1 + e

i
PBx

2
L

2π qB d

(
PB

2

)
n,α+1 (ε)

2
. (A38)

The Harper’s equation plays a crucial role in understanding topological features of a magnetic
system in condensed matter physics, see e.g. [82].

A.3. Contact interaction and quantization condition

The short-range nuclear force may be modeled by contact interaction, in this work, S-wave
dominance is assumed, so we will adopt a simple periodic contact potential,

V (L)(ρ) =
∑
n∈Z2

V0δ(ρ+ nL). (A39)

Hence equation (A1) is reduced to matrix equation,

ψ

(
L,

PB
2 ,2D

)
ε (ηLex)

=

nq−1∑
η′=0

G

(
L,

PB
2 ,2D

)
B (ηLex , η′Lex; ε)V0ψ

(
L,

PB
2 ,2D

)
ε (η′Lex), (A40)

where η = 0, . . . , nq − 1, and ηex stand for the location of nq scattering centers placed in an
enlarged magnetic cell in a plane: nqLex × Ley. The eigen-energy spectrum is thus determined
by quantization condition,

det

[
δη,η′

V0
− G

(
L,

PB
2 ,2D

)
B (ηLex , η′Lex; ε)

]
= 0. (A41)

Both bare strength of potential V0 and the diagonal component of finite volume magnetic

Green’s function, G
(L,

PB
2 ,2D)

B , are ultra-violet (UV) divergent. Ultimately, UV divergence in

both V0 and G
(L,

PB
2 ,2D)

B must be regularized and cancel out explicitly, and quantization condition
in equation (A41) is thus free of UV divergence and well-defined.

A.3.1. Scattering in infinite volume with a contact interaction. In a infinite 2D plane, the two-
body scattering by a contact interaction,

V (∞)(ρ) = V0δ(ρ), (A42)

is described by a inhomogeneous LS equation,

ψ(∞,2D)
k (ρ) = eik·ρ + V0G(∞,2D)

0 (ρ; ε)ψ(∞,2D)
k (0), (A43)
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where k stands for incoming relative momentum of two particles, and it is related to ε by

k2 = 2με.

The infinite volume Green’s function is given by

G(∞,2D)
0 (ρ; ε) =

∫ ∞

−∞

dp
(2π)2

eip·ρ

ε− p2

2μ

= −2μi
4

H(1)
0 (kρ). (A44)

The equation (A43) can be rewritten as

ψ(∞,2D)
k (ρ) = eik·ρ + it(∞)

0 (k)H(1)
0 (kρ), (A45)

where

t(∞)
0 (k) = −2μ

4
1

1
V0

− G(∞,2D)
0 (0; ε)

(A46)

represents S-wave two-body scattering amplitude. t(∞)
0 (k) is normally parameterized by a phase

shift,

t(∞)
0 (k) =

1
cot δ0(ε) − i

. (A47)

Hence, V0 is related to scattering phase shift in infinite volume by

cot δ0(ε) = − 4
2μV0

+
2
π

(
γE +

1
2

ln
μερ2

2

)
|ρ→0. (A48)

A.3.2. Quantization condition of a magnetic system in infinite volume. The eigen-energy of
the charge particles system in a uniform magnetic field is in fact discretized even in infinite
volume. The dynamics of a trapped system by magnetic field in infinite volume is also described
by a homogeneous equation similar to equation (A1). Hence, with a contact interaction given
in equation (A42), the quantization condition of a magnetic system in infinite volume is thus
given by

1
V0

= G(∞,2D)
B (0, 0; ε), (A49)

where

G(∞,2D)
B (0, 0; ε) = −2μ

4π
Γ

(
1
2
− με

qB

)
U

(
1
2
− με

qB
, 1,

qB
2
ρ2

)
|ρ→0. (A50)

Using equation (A48) and asymptotic form of Kummer function,

−Γ

(
1
2
− με

qB

)
U

(
1
2
− με

qB
, 1,

qB
2
ρ2

)
|ρ→0 = 2γE + ψ

(
1
2
− με

qB

)
+ ln

qBρ2

2
|ρ→0, (A51)

where

ψ(x) =
d

dx
ln Γ(x)
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is logarithmic derivative of the Gamma function, thus, after UV cancellation, we find

cot δ0(ε) −M(∞,2D)
B (0, 0; ε) = 0, (A52)

where

M(∞,2D)
B (0, 0; ε) = − 1

π

[
ψ

(
1
2
− με

qB

)
+ ln

qB
με

]
, (A53)

is UV-free and well-defined function in infinite volume.

A.3.3. Quantization condition in finite volume. Using equation (A48) and also introducing the
matrix elements of generalized magnetic zeta function by

M
(

L,
PB

2 ,2D
)

B (ηLex , η′Lex; ε) = − 4
2μ

G

(
L,

PB
2 ,2D

)
B (ηLex , η′Lex; ε)

+ δη,η′
1
π

(
γE +

1
2

ln
μερ2

2

)
|ρ→0, (A54)

thus, the quantization condition in equation (A41) now can be recasted in a Lüscher formula-
like form [1],

det

[
δη,η′ cot δ0(ε) −M

(
L,

PB
2 ,2D

)
B (ηLex , η′Lex; ε)

]
= 0, (A55)

where (η, η′) = 0, . . . , nq − 1.
Using equations (A10) and (A13), the generalized magnetic zeta function is thus given

explicitly by

M
(

L,
PB

2 ,2D
)

B (ηLex , η′Lex; ε)

= M(∞,2D)
B (ηLex , η′Lex; ε)

+
1
π

∑
nB �=0

e−i
PB

2 ·nBL eiqBηnxnqL2

× e−
iqB
2 (ηL+η′L+nxnqL) nyL e−

qB
4 |(η−η′)Lex+nBL|2

× Γ

(
1
2
− με

qB

)
U

(
1
2
− με

qB
, 1,

qB
2
|(η − η′)Lex + nBL|2

)
, (A56)

where

M(∞,2D)
B (ηLex, η′Lex; ε) = − 4

2μ
G(∞,2D)

B (ηLex , η′Lex; ε)

+ δη,η′
1
π

(
γE +

1
2

ln
μερ2

2

)
|ρ→0. (A57)

Only diagonal terms of infinite volume magnetic Green’s function, G(∞,2D)
B , are UV divergent.

Using equation (A51) again, thus the UV regularized diagonal terms of M(∞,2D)
B function is
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Figure 2. The plot of finite volume magnetic zeta function M(L,
PB

2 ,2D)
B (0, 0; ε) defined

in equation (A54) vs M(∞,2D)
B (0, 0; ε) (red dashed) given in equation (A58). The solid

black, blue and pink curves are corresponding to PB = (0, 0), (0, 2π
L ) and ( 2π

nqL , 2π
L )

respectively. The parameters are chosen as: L = 5, and nq = np = 1.

given again by

M(∞,2D)
B (ηLex, ηLex; ε) = − 1

π

[
ψ

(
1
2
− με

qB

)
+ ln

qB
με

]
. (A58)

The example plot of M(L,
PB

2 ,2D)
B (0, 0; ε) for various of PB’s compared with M(∞,2D)

B (0, 0; ε) is
given in figure 2.

Appendix B. Topological features of a magnetic system in a finite volume

It has been well-known in condensed matter physics that the Bloch electron in a magnetic
field yields a non-trivial topology [80]. The non-trivial topology of a magnetic system can be
visually illustrated simply by using the twisted boundary condition given in equation (A3).
Two edges of enlarged magnetic cubic box at rx = 0 and rx = nqL are glued together by a
twist in the phase of wavefunction:

ψ

(
L,

PB
2

)
ε (nqL, ry) = ei

PB
2 ·nBL e−iϕ(ry)ψ

(
L,

PB
2

)
ε (0, ry), (B1)

where

ϕ(ry) = qBnqLry = 2πnp
ry

L
(B2)

is the twisted phase of wavefunction along the circle of ry ∈ [0, L] that is a cross section of
a torus with a fixed rx . How much of twists in the phase is totally determined by np. Hence,
the phase rotation of ϕ(ry) along the circle of ry in fact form a geometry of np times twisted
Möbius strip, see an example in figure 3, which demonstrates a non-trivial topology.
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Figure 3. The plot of rotation of phase ϕ(ry) defined in equation (B2) along a cross
section of a torus with a fixed rx (black circle). The phase changes of ϕ(ry) on the circle
of ry is represented by the rotation of red arrows.

B.1. k-space and Brillouin zone

Although in LQCD, the parameter PB is associated with the plane wave of CM motion of two-
particle system, eiPB ·R, see reference [29]. Requirement of periodic boundary condition in CM
motion yields the discrete value of PB’s in equation (A5), and discrete energy spectra as well.
To further examine some non-trivial topological features and analytic properties of a magnetic
system in finite volume, from now on, the discrete magnetic lattice vector PB

2 is replaced by
a continuous wave vector k that is analogous to the crystal momentum in condensed matter
physics. In current section and also section 2, the wave vector k are limited in real space. The
continuous distribution of wave vector k allows the introduction of Berry phase that is defined
in a real k-space [80, 89]. The Berry phase is a phase angle that describes the global phase
evolution of the wavefunction of a system in a closed path in k-space. Due to the fact that the
same physical state is represented by a ray of wavefunctions that differ by a phase, such as |ψ〉
and |ψ′〉 = eiφ|ψ〉, the set of phase factor eiφ form a U(1) group. Hence the ray of wavefunctions
that are connected by a phase factor define a U(1) fibre in a manifold of k-space. Therefore,
Berry phase is also recognized as a topological holonomy of the connection defined in a U(1)
fibre bundle in a parameter space [90], which is k-space in our case. Berry phase is an important
physical quantity that measures the topological feature of a system in a parameter space.

When k is varied continuously, the discrete energy spectra are smeared into energy bands,
also called bulk energy bands. These energy bands are separated by forbidden gaps between
them due to the particle interactions. Each single allowed energy band hence becomes an iso-
lated island in totally periodic systems. It has been known that the edge effects in a non-trivial
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topological system may allow the gapless energy solutions [83, 84], which yields a continuous
and smooth connection between two isolated energy bands. The topological edge solutions in
a magnetic system will be discussed in section 2. In addition, when wave vector k is further
extended into a complex plane, given certain paths, the real energy solutions in the gap can also
be found, which also connect two isolated energy bands smoothly. The discussion of analytic
continuation of solutions in forbidden gaps will be presented in appendix C.

Using equation (A10), one can show easily that

G(L,k+G,2D)
B (ρ,ρ′; ε) = G(L,k)

B (ρ,ρ′; ε), (B3)

where

G =
2π
nqL

ex +
2π
L
ey, (B4)

hence ψ(L,k+G,2D)
ε (r) satisfies LS equation

ψ(L,k+G,2D)
ε (ρ)

=

∫
L2

B

dρ′G(L,k)
B (ρ,ρ′; ε)V (L)(ρ′)ψ(L,k+G,2D)

ε (ρ′), (B5)

so does ψ(L,k,2D)
ε (ρ). Therefore ψ(L,k+G,2D)

ε (ρ) and ψ(L,k,2D)
ε (ρ) can only differ by a arbitrary

phase factor, such as,

ψ(L,k+G,2D)
ε (ρ) = ψ(L,k,2D)

ε (ρ), (B6)

and they both describe the same physical state. Therefore k + G and k are identified as the
same point. The wave vector k hence can be limited in first magnetic Brillouin zone,

kx ∈
[

0,
2π
nqL

]
, ky ∈

[
0,

2π
L

]
, (B7)

and the entire Brillouin zone form the geometry of a torus.

B.2. Berry phase and Berry vector potential

The non-trivial topology of magnetic system in finite volume results in a non-zero Berry phase.
The Berry phase is defined crossing over the torus of entire Brillouin zone by

γε =

∫ 2π
L

0
dky

[
Aε,y

(
2π
nqL

, ky

)
− Aε,y(0, ky)

]

−
∫ 2π

nqL

0
dkx

[
Aε,x

(
kx ,

2π
L

)
− Aε,x(kx , 0)

]
, (B8)

where Berry vector potential A(kx , ky) is given by

Aε(kx, ky) =
∫

L2
B

dρu(k,2D)∗
ε (ρ)i∇ku(k,2D)

ε (ρ), (B9)

and u(k,2D)
ε (ρ) stands for the Bloch wavefunction and is related to ψ(L,k,2D)

ε (ρ) by

ψ(L,k,2D)
ε (ρ) = eik·ρu(k,2D)

ε (ρ). (B10)
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The Berry phase over the torus of entire Brillouin zone is in fact a topological invariant quantity
and quantized as 2π multiplied by an integer that is known as a Chern number [90].

In general, the Berry phase must be computed numerically by solving eigenvalue problems.
In presence of particles interactions, the wavefunction must be given by linear superposition
of

ψ(L,k,2D)
ε (ρ) =

∞∑
n=0

np−1∑
α=0

c(k)
n,α(ε)χ(k)

n,α(ρ). (B11)

The coefficient c(k)
n,α(ε) satisfies a matrix equation,

H(k)c(k)(ε) = εc(k)(ε), (B12)

where the matrix elements of effective Hamiltonian H(k) are given by

H(k)
n,α;n′,α′ = δn,α;n′,α′

qB
μ

(
n +

1
2

)
+ V (k)

n,α;n′,α′ , (B13)

and V (k)
n,α;n′,α′ is defined in equation (A31). The wave vector k in equation (B12) is now treated

as the parameter of dynamics of system, and ultimately, adiabatic evolution of k crossing over
magnetic Brillouin zone yields a Berry phase [80].

Since Berry phase is a topological invariance and also a robust quantity against parti-
cle interactions, non-trivial topological feature of a magnetic system in finite volume can be
demonstrated by only using solutions of zero particle interactions. For a fixed n, there are np

degenerate states,

u(k)
n,α(ρ) = e−ik·ρχ(k)

n,α(ρ). (B14)

The Berry phase for degenerate states u(k)
n,α(ρ) with a fixed n is defined by the trace of Berry

phase for each state [91],

γn =

np−1∑
α=0

γn,α, (B15)

where γn,α is defined in equation (B8) with Berry vector potential,

An,α(kx, ky) =
∫

L2
B

dρu(k)∗
n,α (ρ)i∇ku(k)

n,α(ρ). (B16)

Using relations of 1D harmonic oscillator eigen-solutions,

√
qBrxφn(rx) =

√
n + 1

2
φn+1(rx) +

√
n
2
φn−1(rx),

∂√qBrx
φn(rx) = −

√
n + 1

2
φn+1(rx) +

√
n
2
φn−1(rx),

(B17)

we find

22



J. Phys. A: Math. Theor. 55 (2022) 265201 P Guo and V Gasparian

i∂kx u(k)
n,α(ρ) =

1√
qB

[√
n + 1

2
u(k)

n+1,α(ρ) +

√
n
2

u(k)
n−1,α(ρ)

]

−
( 2πα

L + ky

qB

)
u(k)

n,α(ρ), i∂ky u(k)
n,α(ρ)

= − i√
qB

[√
n + 1

2
u(k)

n+1,α(ρ) −
√

n
2

u(k)
n−1,α(ρ)

]
. (B18)

Also using orthogonality relation given in equation (A25), we thus obtain

An,α,x(kx, ky) = −
( 2πα

L + ky

qB

)
,

An,α,y(kx, ky) = 0.

(B19)

Hence, the Berry phases are given by

γn,α =
2π
np

,
γn

2π
= 1. (B20)

B.3. Topological properties of χ(k)
n,α functions

The Berry phase of a magnetic system in finite volume can also be understood by simply
examining the topological properties of χ(k)

n,α functions.
Using equation (A20), one can show that how the center of χ(k)

n,α function is pushed along
x-direction when the wave vector k is forced to change in y-direction,

χ
(k+�kyey)
n,α (ρ) = ei�kyryχ(k)

n,α

(
ρ+

�ky

qB
ex

)
. (B21)

Thus equation (B21) yields

χ

(
k+ 2π

L
np
nq

ey

)
n,α (ρ) = eiqBLryχ(k)

n,α(ρ+ Lex), (B22)

that is to say, to move the center of χ(k)
n,α by length-L in x-direction, it requires the change of

wave vector k by 2π
L

np
nq

in y-direction.
When k is forced to move across entire Brillouin zone in y-direction,

χ

(
k+ 2π

L ey

)
n,α (ρ) = ei 2π

L ryχ(k)
n,α

(
ρ+

nqL
np

ex

)
= χ(k)

n,α+1(ρ), (B23)

the center of χ(k)
n,α function is only moved by nqL

np
in x-direction, which is then smoothly

connected to the χ(k)
n,α+1 function. Hence, an array of states

χ(k)
n =

[
χ(k)

n,0 ,χ(k)
n,1 , . . . ,χ(k)

n,np−1

]
, (B24)

behaves as a np components spinor. �ky =
2π
L plays the role of raising operator which change

each individual component of spinor χ(k)
n by one unit,
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χ

(
k+ 2π

L ey

)
n =

[
χ(k)

n,1 ,χ(k)
n,2 , . . . ,χ(k)

n,np

]
. (B25)

Operating raising operator np times, with the help of periodic boundary condition, we can also
show that

χ

(
k+ 2π

L npey

)
n,α (ρ) = ei 2π

L npryχ(k)
n,α(ρ+ nqLex) = χ(k)

n,α+np
(ρ)

= eikxnqLχ(k)
n,α(ρ). (B26)

Therefore,

χ

(
k+ 2π

L ey

)
n =

[
χ(k)

n,1 ,χ(k)
n,2 , . . . , eikxnqLχ(k)

n,0

]
, (B27)

changing k by 2π
L ey leads to the circulation of all components only once, and only the compo-

nent sitting at right edge of spinor gains a phase factor, eikxnqL. On the other hand, changing k
by 2π

L npey however yields that the center of each component of spinor χ(k)
n is forced to wind

around entire magnetic unit cell in x-direction. Meanwhile, all components of the spinor cir-
culate np times and come back to the starting point, so each one has a chance to gain a phase
factor eikx nqL when it reaches the right edge of spinor,

χ

(
k+ 2π

L npey

)
n = eikxnqLχ(k)

n . (B28)

In addition, when the wave vector k is forced to move across magnetic Brillouin zone in x-
direction, the each component of spinor χ(k)

n remains at the same location in a spinor,

χ

(
k+ 2π

nqL ex

)
n,α (ρ) = χ(k)

n,α(ρ), (B29)

and

χ

(
k+ 2π

nqL ex

)
n = χ(k)

n . (B30)

Now, the non-trivial Berry phase may also be understood simply by using the properties given
in equations (B27) and (B30). Assuming that we start at one corner of Brillouin zone: k = (0, 0)
with initial spinor of

χ(i)
n =

[
χ(0,0)

n,0 ,χ(0,0)
n,1 , . . . ,χ(0,0)

n,np−1

]
, (B31)

where i is used to label initial state of spinor, then we start moving around the boundary of
magnetic Brillouin zone counter-clock wise,

k : (0, 0)
(1)−−→

(
2π
nqL

, 0

)
(2)−−→

(
2π
nqL

,
2π
L

)
(3)−−→

(
0,

2π
L

)
(4)−−→ (0, 0).

(B32)

At step (1), moving from k = (0, 0) to ( 2π
nqL , 0) by an increase of �kx =

2π
nqL , there is no phase

change,

χ

(
2π

nqL ,0
)

n = χ(i)
n . (B33)
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At step (2), moving from ( 2π
nqL , 0) to ( 2π

nqL , 2π
L ) by an increase of �ky =

2π
L , we find

χ

(
2π

nqL , 2π
L

)
n =

[
χ(0,0)

n,1 ,χ(0,0)
n,2 , . . . , ei 2π

nqL nqL
χ(0,0)

n,0

]
. (B34)

At step (3), moving from ( 2π
nqL , 2π

L ) to (0, 2π
L ) by a decrease fo �kx = − 2π

nqL , there is again no
phase change, so that

χ

(
0, 2π

L

)
n = χ

(
2π

nqL , 2π
L

)
n . (B35)

At last step (4), moving from (0, 2π
L ) back to (0, 0) by a decrease of �ky = − 2π

L , although there
is no phase change at last step, all components of spinor are moved down by one unit, so that
the final state of spinor is given by

χ( f )
n =

[
χ(0,0)

n,0 ,χ(0,0)
n,1 , . . . , ei 2π

nqL nqL
χ(0,0)

n,np−1

]
. (B36)

Therefore, the phase difference between initial and final states is given by

−
np−1∑
α=0

Im ln〈χ( f )
n,α|χ(i)

n,α〉 =
2π
nqL

nqL = 2π, (B37)

which can be identified as Berry phase γn.
The Berry phase is the quantity that describes the accumulation of a global phase of a

system’s wavefunction as the k is carried around the torus of Brillouin zone, non-zero value
of Berry phase hence represents a topological obstruction to the determination of the phase
of wavefunction [81] over entire Brillouin zone. For a magnetic system, the magnetic field
create a vortex-like singularities in wavefunctions that attribute to a non-trivial topology of a
magnetic system. The vortex-like singularities can be illustrated analytically by χ(k)

0,α(ρ). Using
equation (A20) and H0(x) = 1, we find

Θ(k)
α (ρ) = e−i

(
ky+

2πα
L

)
ryχ(k)

0,α(ρ)

=
1√
L

(
qB
π

) 1
4

e
− qB

2

(
rx+

ky+ 2πα
L

qB

)2

× ϑ3

(
πnp

L

[(
ry −

kx

qB

)
+ i

(
rx +

ky +
2πα

L

qB

)]
, e−πnpnq

)
, (B38)

where ϑ3(z, q) is Jacobi’s theta function [78], and defined by

ϑ3(z, q) = 1 + 2
∞∑

n=1

qn2
cos(2nz). (B39)

The zeros of

ϑ3(z, q = eiπτ )

are determined by linear equation,

z =

(
n1 +

1
2

)
π +

(
n2 +

1
2

)
τπ, (n1, n2) ∈ Z, (B40)
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hence, the locations of zeros of χ(k)
0,α(ρ) are given by

ry −
kx

qB
=

(
n1 +

1
2

)
L
np

, n1 ∈ Z,

rx +
ky

qB
+

2πα
L

qB
=

(
n2 +

1
2

)
nqL, n2 ∈ Z.

(B41)

The zeros of χ(k)
0,α(ρ) present vortex-like singularities, which ultimately create discontinuity of

phase of χ(k)
0,α(ρ) in both ρ- and k-space. The ϑ3(z, q) is a real function when z values are real

and |q| < 1, therefore, for a fixed k,

Im
[
Θ(k)

α (ρ)
]
ρ=

(
− ky+ 2πα

L
qB ,ry

) = 0, (B42)

thus the phase of χ(k)
0,α(ρ) is not well-defined along the line of (− ky+

2πα
L

qB , ry) in ρ-space. On the
other hand, for a fixed ρ,

Im
[
Θ(k)

α (ρ)
]
k=

(
kx ,− 2πα

L −qBry

) = 0, (B43)

so in k-space, the phase is also not well-defined along the line of (kx ,− 2πα
L − qBry). These

two lines cut though both entire ρ- and k-space. Because of asymmetry of Θ(k)
α (ρ) along these

two lines, it creates the mismatch of the phase of χ(k)
0,α(ρ) on half portion of the line, which

starts at the location of zeros of χ(k)
0,α(ρ), see figure 4 as an example of phase mismatch. These

vortex-like singularities in wavefunction is similar to the branch point singularities in complex
analysis, the vortex creates a cut in both ρ- and k-space, and phase of wavefunction along the
cut has a discontinuity. Hence, when particle is forced to wind around the vortex, the phase
of wavefunction has a jump which account how many times the winding number of motion
around the vortex.

The phase discontinuity of χ(k)
n,α(ρ) ultimately creates non-trivial topology of the Berry vec-

tor potential given in equation (B19). The vortex-like singularities not only create discontinuity
of phase in wavefunction, but also leads to the mismatch of Berry vector potential on the torus
of entire magnetic Brillouin zone. Since the torus has no boundary, uniquely and smoothly
defined Berry vector potential on the torus results in the trivial topology and vanishing Berry
phase. Forχ(k)

n,α(ρ) wavefunction, according to equation (B19), it is clearly that the Berry vector
potential on the lower edge of torus along the line k = (kx , 0) is

An,α(kx, 0) = −α
nqL
np

ex. (B44)

On the upper edge of torus along the line of k = (kx, 2π
L ), the Berry vector potential is

An,α

(
kx ,

2π
L

)
= −(α+ 1)

nqL
np

ex. (B45)

The upper and lower edges of a torus is considered as the same points, hence, magnetic field
ultimately cause a mismatch of Berry vector potential on the torus, see figure 5 as an example.
The discontinuity of Berry vector potential is given by

An,α

(
kx ,

2π
L

)
−An,α(kx, 0) = −nqL

np
ex, (B46)
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Figure 4. The phase plot of χ(k)
0,0 (ρ) with fixed k = ( πL , π

L ) in ρ-space (upper pannel) vs
phase plot of χ(k)

0,0 (ρ) with fixed ρ = (0, 0) in k-space (lower panel). The parameters are
chosen as: L = 5 and np = nq = 1.

which ultimately leads to a non-zero Berry phase. The discontinuity of Berry vector potential
on a closed path in k-space is known as a holonomy [90]. When wave vector k is forced to
move along a closed path, the Berry vector potential then generates a horizontal lift of the
wavefunction along the U(1) fibre of each state, hence, in adiabatic limit, the states along the
path in k-space are all connected by

u(k(t))
n,α (ρ) ∼ e−i

∫ k(t)
k(0)An,α(k)·dku(k(0))

n,α (ρ). (B47)

Each state on the path has the memory of previous states along the path. The holonomy of a sys-
tem detects a topological or geometric nature of the underlying structure of the physical system.
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Figure 5. The plot of Berry vector potential An,0(kx , ky) on a cross section of torus of
Brillouin zone with a fixed kx . The parameters are chosen as: L = 5 and np = nq = 1.

The twisting of U(1) fibre bundle results in the non-trivial value of holonomy. The twisting of
U(1) fibre bundle in k-space can be understood by the relation given in equation (B26), which
yields

u

(
kx , 2π

L np

)
n,α (ρ) = e−i 2π

L npry eiϕ̃(kx )u(kx ,0)
n,α (ρ), (B48)

where

ϕ̃(kx) = kxnqL. (B49)

Equation (B48) may be interpreted as twisted boundary condition in enlarged Brillouin zone:

kx ∈
[

0,
2π
nqL

]
, ky ∈

[
0,

2π
L

np

]
. (B50)

Hence, similar to twisted boundary condition in equation (B1) in ρ-space, when two edges at
ky = 0 and ky =

2π
L np of enlarged Brillouin zone are glued together, ϕ̃(kx) describes the twisted

phase of wavefunction along the circle of kx ∈ [0, 2π
nqL ].

We also remark that noticing that equation (B18) may be rearranged to∑
n′,α′

[
δn,α;n′,α′∇k + iAn,α;n′,α′ (k)

]
u(k)

n′,α′ (ρ) = 0, (B51)
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Figure 6. Plot of G(L,k)
0 (0; ε) defined in equation (C2) vs 1

V0
(blue solid line): the area

of allowed energy bands are filled by black curves (real k ∈ [0, 2π
L ] values), the energy

bands are separated by gaps; the red and purple curves that show up in gaps are gener-
ated with complex wave vectors k = π

L + iκ and k = iκ respectively. A pair of energy
solutions in the gap can be found for κ < κc. The parameters are: V0 = 0.5, μ = 1 and
L = 5.

where the matrix elements of Berry vector potential matrix are given by

An,α;n′,α′ (k) =
∫

L2
B

dρu(k)∗
n,α (ρ)i∇ku(k)

n′,α′ (ρ)

=
1√
qB

√
n + 1

2
δn+1,n′δα,α′ (ex − iey)

+
1√
qB

√
n
2
δn−1,n′δα,α′(ex + iey)

− δn,n′δα,α′

( 2πα
L + ky

qB

)
ex. (B52)

Non-vanishing off-diagonal terms in Berry vector potential matrix suggest that a magnetic sys-
tem may experience non-adiabatic transition between different eigen-states. For an example,
assuming an non-interacting magnetic system, the general Bloch wavefunction is given by the
linear superposition of eigen-states of non-interacting magnetic system,

u(k(t))(ρ) =
∑
n,α

cn,α(t)u(k(t))
n,α (ρ), (B53)

where t is used to parameterize the evolution of wave vector k. Also assuming u(k(t))(ρ) satisfies
Schrödinger equation

i∂tu
(k(t))(ρ) = Ĥeff(k(t))u(k(t))(ρ), (B54)
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where u(k(t))
n,α (ρ) are eigen-solutions of Ĥeff(k(t)) = e−ik(t)·ρĤρ eik(t)·ρ,

Ĥeff(k(t))u(k(t))
n,α (ρ) =

qB
μ

(
n +

1
2

)
u(k(t))

n,α (ρ), (B55)

thus, we find that the coefficient cn,α(t) must satisfy equation,

i
dcn,α(t)

dt
=

qB
μ

(
n +

1
2

)
cn,α(t) − dk(t)

dt
·
∑
n′,α′

An,α;n′,α′ (k)cn′,α′ (t). (B56)

Therefore, the diagonal term in Berry vector potential matrix yields the Berry phase in
equation (B20) in the limit of adiabatic process, the off-diagonal terms may describes the
transition among different eigen-states when k is forced to increase or decrease.

Appendix C. Analytic properties of finite volume solutions

The periodicity of lattice structure and particles interaction create the band structures, the
energy spectrum split into isolated bands separated by gaps in betweens. Hence, when wave
vector k is changed continuously, the energy of particle must experience a discontinuity when
particle jumps from one band to another. It has been shown [92, 93] that when wave vector
is taken complex at the edge of Brillouin zone, the real energy solutions in the gap are possi-
ble, hence the transition from one band to another can be made smoothly in complex k plane.
The complex wave vector at the edge of Brillouin zone may be interpreted as edge solutions
with a penetrable wall on the edge or surface of material. In presence of a magnetic field, the
real energy solutions can also be found for complex wave vector, however, the situation is more
complicated, the energy solutions not only appear in the gap but also penetrate into bulk energy
bands because of non-trivial topology.

In this section, we first give a brief summary of complex wave vector with a simple 1D
example. With a contact interaction, the quantization condition in 1D is given by

1
V0

= G(L,k)
0 (0; ε), (C1)

where 1D finite volume Green’s function is given by

1
2μ

G(L,k)
0 (0; ε) = −

∑
n∈Z

i ei
√

2με|nL|
√

2με
e−iknL

= − 2μ
2
√

2με
sin

√
2μεL

cos
√

2μεL − cos kL
. (C2)

The finite volume Green’s function G(L,k)
0 remains real as for the real value of k, which yields

the real dispersion relation of

ε = ε(k) = ε(−k) = ε

(
k +

2π
L

)
. (C3)

The band structures is explicitly produced by the bound of | cos kL| � 1. Using equation (C2),
one can show that for k = πd

L + iκ, d ∈ Z, Green’s function is still a real function,

G

(
L, πd

L +iκ
)

0 (0; ε) = − 2μ
2
√

2με
sin

√
2μεL

cos
√

2μεL − (−1)d cosh κL
. (C4)
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Figure 7. The motion of ε(k) as the wave vector k moves continuously in complex plane
follow the path: C1 → Cκ → C2. C1 and C2 are on real axis in k plane between [0, π

L ]
and [ πL , 2π

L ] respectively. Cκ is on complex plane with k = π
L + iκ, κ : 0 → κc → 0. The

energy solutions thus moves continuously from ε1(k) into εκ( πL + iκ) in the gap, and
then connected into ε2(k).

Hence, we can see clearly because of

cosh κL � 1,

the energy solutions of complex wave function, k = πd
L + iκ, only show up in the gaps between

bands, see figure 6. In the gaps, for a fixed V0, a pair of energy solutions can be found for
finite value of κ. The gap between two solutions shrinks when κ is increased, until κ reach its
critical point κc, the gap close up, two solutions becomes degenerate. Beyond κc, no solutions
can be found, see figure 6 as an example. Therefore, the complex wave vector can be used as
a parameter to navigate across bulk energy bands smoothly. Using figure 7 as an example, two
allowed energy bands ε1(k) and ε2(k) are separated by a gap for real values of k’s. Imaging wave
vector k start at k = 0, and is forced to move following the path of C1 → Cκ → C2 in figure 7,
where both C1 and C2 are defined on real axis for k ∈ [0, π

L ] and k ∈ [ πL , 2π
L ] respectively. The

contour Cκ is defined in complex k plane with fixed Re[k] = π
L value, and the imaginary part of

Im[k] = κ is circling around κc, κ : 0 → κc → 0. While k is on C1, the energy solution stays in
energy band ε1(k) following the motion of k, moving from lower edge ε1(0) up to upper edge
ε1( πL ). While k is extended into complex plane on Cκ, the energy solution then protrude into the
gap between two allowed bands, and continue climbing up to the lower edge of energy band
ε2(k) at ε2( πL ). Then, it merged into second band ε2(k) if k is increased further on C2. Similarly,
ε2(k) and ε3(k) are smoothly connected by taking wave vector into complex plane at the edge of
Brillouin zone: k = 2π

L + iκ which is equivalent to k = iκ, see figure 6. We can also see from

figure 6 that the curves of G
(L, πd

L +iκ)
0 (0; ε) with different d values occupy completely different

territories, hence there are no degenerate energy solutions for different d values.
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Figure 8. Energy band structure (filled with black curves) is the result of periodicity in
both x- and y-direction, red (d = 1) and purple (d = 0) curves are generated by taking
kx into complex plane: kx = πd

L + iκ. ky’s are fixed at ky = 0.3 π
L and ky = 0.6 π

L in upper
and lower panels respectively. The parameters are chosen as: L = 5, and nq = np = 1.
Blue line represents a constant cot δ0(ε) that is used only to help to visualize the energy
solutions.

In presence of magnetic field, with a complex wave vector

k =

(
πd
nqL

+ iκ

)
ex + kyey, d ∈ Z, (C5)

similarly, the real energy solutions are also available, however situation becomes much more
intriguing. Unfortunately, for a magnetic system, analytic properties cannot be shown easily in
a straightforward way, all the discussions heavily rely on numerics. Let us consider the case of
nq = 1 as a simple example, which corresponds to a single contact interaction placed at origin,
thus the magnetic zeta function is given by
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Figure 9. Overlapping energy bands of different ky values: ky = 0.3 π
L (black) vs

ky = 0.6 π
L (orange).

M
(

L,
(

πd
nqL +iκ

)
ex+kyey,2D

)
B (0, 0; ε)

= M(∞,2D)
B (0, 0; ε)

+
1
π

∑
nB �=0

(−1)dnx(−1)npnxnyeκnxnqL e−ikynyL

× e−
qB
4 |nBL|2Γ

(
1
2
− με

qB

)
U

(
1
2
− με

qB
, 1,

qB
2
|nBL|2

)
, (C6)

which is indeed a real function. Compared with previously discussed 1D topologically trivial
example, there are some new features in a magnetic system. First of all, as we can see in
figure 8, for small ky, the gap area between allowed energy bands cannot be completely filled
by taking kx into complex plane, see gap between ε1 and ε2 bands in upper panel in figure 8.
Hence, for certain range of ky, although complex wave vector kx may narrow the gap, the gap
remains. Therefore, using complex kx alone to navigate though gaps are not possible for certain
range of ky, however, due to overlapping energy bands of different ky, see figure 9, it may be
still possible by using both complex kx and real ky to navigate through different energy bands
smoothly by avoiding gap area. Secondly, with complex wave vector kx =

πd
nqL + iκ, curves not

only show up in the gap areas, some curves punch through the allowed bulk bands, and invade
into the gap areas with different d value, see figure 8. In addition, the curves with complex wave
vectors in gap make up a vortex shape, all the curves are pushed away from a vortex centered
at location of Landau level energy: εn = qB

μ
(n + 1

2 ), see example in figure 8. These irregular
behaviors of magnetic zeta function with a complex wave vector may have a topological origin.
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[32] Busch T, Englert B-G, Rzażewski K and Wilkens M 1998 Found. Phys. 28 549–59
[33] Stetcu I, Barrett B, van Kolck U and Vary J 2007 Phys. Rev. A 76 063613
[34] Stetcu I, Rotureau J, Barrett B R and van Kolck U 2010 Ann. Phys., NY 325 1644
[35] Rotureau J, Stetcu I, Barrett B, Birse M and van Kolck U 2010 Phys. Rev. A 82 032711
[36] Rotureau J, Stetcu I, Barrett B and van Kolck U 2012 Phys. Rev. C 85 034003
[37] Luu T, Savage M J, Schwenk A and Vary J P 2010 Phys. Rev. C 82 034003
[38] Yang C-J 2016 Phys. Rev. C 94 064004
[39] Johnson C W et al 2019 From bound states to the continuum: connecting bound state calculations

with scattering and reaction theory (arXiv:1912.00451)
[40] Zhang X 2020 Phys. Rev. C 101 051602
[41] Zhang X, Stroberg S R, Navrátil P, Gwak C, Melendez J A, Furnstahl R J and Holt J D 2020 Phys.

Rev. Lett. 125 112503
[42] Miransky V A and Shovkovy I A 2015 Phys. Rep. 576 1
[43] Andersen J O, Naylor W R and Tranberg A 2016 Rev. Mod. Phys. 88 025001
[44] Fukushima K, Kharzeev D E and Warringa H J 2008 Phys. Rev. D 78 074033
[45] Adamczyk L et al (STAR) 2015 Phys. Rev. Lett. 114 252302
[46] Siddique I, Cao S, Tabassam U, Saeed M and Waqas M 2022 arXiv:2201.09634
[47] Gusynin V P, Miransky V A and Shovkovy I A 1994 Phys. Rev. Lett. 73 3499

Gusynin V P, Miransky V A and Shovkovy I A 1996 Phys. Rev. Lett. 76 1005 (erratum)
[48] Gusynin V P, Miransky V A and Shovkovy I A 1996 Nucl. Phys. B 462 249
[49] Chernodub M N 2010 Phys. Rev. D 82 085011
[50] Detmold W and Savage M J 2004 Nucl. Phys. A 743 170
[51] Detmold W 2005 Phys. Rev. D 71 054506
[52] Detmold W, Tiburzi B C and Walker-Loud A 2008 PoS LATTICE2008 p 147
[53] Detmold W, Tiburzi B C and Walker-Loud A 2009 eCONF C0906083 p 03

34

https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(95)00313-h
https://doi.org/10.1016/0550-3213(95)00313-h
https://doi.org/10.1103/physrevd.72.114506
https://doi.org/10.1103/physrevd.72.114506
https://doi.org/10.1088/1126-6708/2008/08/024
https://doi.org/10.1088/1126-6708/2005/07/011
https://doi.org/10.1016/j.physletb.2009.10.055
https://doi.org/10.1016/j.physletb.2009.10.055
https://doi.org/10.1140/epja/i2011-11139-7
https://doi.org/10.1140/epja/i2011-11139-7
https://doi.org/10.1103/physrevd.88.014501
https://doi.org/10.1103/physrevd.88.014501
https://doi.org/10.1103/PhysRevD.88.014507
https://doi.org/10.1103/PhysRevD.88.014507
https://doi.org/10.1016/j.physletb.2009.02.035
https://doi.org/10.1016/j.physletb.2009.02.035
https://doi.org/10.1140/epja/i2012-12067-8
https://doi.org/10.1140/epja/i2012-12067-8
https://doi.org/10.1103/physrevd.90.116003
https://doi.org/10.1103/physrevd.90.116003
https://doi.org/10.1140/epja/i2017-12440-1
https://doi.org/10.1140/epja/i2017-12440-1
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/physrevd.97.114508
https://doi.org/10.1103/physrevd.97.114508
https://doi.org/10.1103/PhysRevD.95.054508
https://doi.org/10.1103/PhysRevD.95.054508
https://doi.org/10.1016/j.physletb.2017.10.009
https://doi.org/10.1016/j.physletb.2017.10.009
https://doi.org/10.1103/PhysRevD.97.014504
https://doi.org/10.1103/PhysRevD.97.014504
https://doi.org/10.1103/PhysRevD.99.014501
https://doi.org/10.1103/PhysRevD.99.014501
https://doi.org/10.1103/physrevd.101.054510
https://doi.org/10.1103/physrevd.101.054510
https://doi.org/10.1103/PhysRevD.98.094502
https://doi.org/10.1103/PhysRevD.98.094502
https://doi.org/10.1016/j.physletb.2020.135370
https://doi.org/10.1016/j.physletb.2020.135370
https://doi.org/10.1103/physreva.101.032301
https://doi.org/10.1103/physreva.101.032301
https://doi.org/10.1103/physreva.101.032301
https://doi.org/10.1103/physreva.101.032301
https://doi.org/10.1103/physrevd.101.094510
https://doi.org/10.1103/physrevd.101.094510
https://arxiv.org/abs/2007.04473
https://doi.org/10.1103/physrevd.102.074508
https://doi.org/10.1103/physrevd.102.074508
https://doi.org/10.1103/physrevd.102.074508
https://doi.org/10.1103/physrevd.102.074508
https://doi.org/10.1103/physrevd.103.094520
https://doi.org/10.1103/physrevd.103.094520
https://arxiv.org/abs/2101.03901
https://doi.org/10.1103/physrevc.103.064611
https://doi.org/10.1103/physrevc.103.064611
https://doi.org/10.1023/a:1018705520999
https://doi.org/10.1023/a:1018705520999
https://doi.org/10.1023/a:1018705520999
https://doi.org/10.1023/a:1018705520999
https://doi.org/10.1103/physreva.76.063613
https://doi.org/10.1103/physreva.76.063613
https://doi.org/10.1016/j.aop.2010.02.008
https://doi.org/10.1016/j.aop.2010.02.008
https://doi.org/10.1103/physreva.82.032711
https://doi.org/10.1103/physreva.82.032711
https://doi.org/10.1103/physrevc.85.039903
https://doi.org/10.1103/physrevc.85.039903
https://doi.org/10.1103/physrevc.82.034003
https://doi.org/10.1103/physrevc.82.034003
https://doi.org/10.1103/physreve.94.030301
https://doi.org/10.1103/physreve.94.030301
https://arxiv.org/abs/1912.00451
https://doi.org/10.1103/physrevd.101.026005
https://doi.org/10.1103/physrevd.101.026005
https://doi.org/10.1103/physrevlett.125.112503
https://doi.org/10.1103/physrevlett.125.112503
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1103/revmodphys.88.025001
https://doi.org/10.1103/revmodphys.88.025001
https://doi.org/10.1103/physrevd.78.074033
https://doi.org/10.1103/physrevd.78.074033
https://doi.org/10.1103/PhysRevLett.114.252302
https://doi.org/10.1103/PhysRevLett.114.252302
https://arxiv.org/abs/2201.09634
https://doi.org/10.1103/physrevlett.73.3499
https://doi.org/10.1103/physrevlett.73.3499
https://doi.org/10.1103/physrevlett.76.1005
https://doi.org/10.1103/physrevlett.76.1005
https://doi.org/10.1016/0550-3213(96)00021-1
https://doi.org/10.1016/0550-3213(96)00021-1
https://doi.org/10.1103/physrevd.82.085011
https://doi.org/10.1103/physrevd.82.085011
https://doi.org/10.1016/j.nuclphysa.2004.07.007
https://doi.org/10.1016/j.nuclphysa.2004.07.007
https://doi.org/10.1103/physrevd.71.054506
https://doi.org/10.1103/physrevd.71.054506


J. Phys. A: Math. Theor. 55 (2022) 265201 P Guo and V Gasparian

[54] Lee F X, Zhou L, Wilcox W and Christensen J C 2006 Phys. Rev. D 73 034503
[55] Lee F X, Kelly R, Zhou L and Wilcox W 2005 Phys. Lett. B 627 71
[56] Bali G S, Bruckmann F, Endrodi G, Fodor Z, Katz S D, Krieg S, Schafer A and Szabo K K 2012 J.

High Energy Phys. JHEP02(2012)044
[57] Bali G S, Bruckmann F, Endrodi G, Fodor Z, Katz S D and Schafer A 2012 Phys. Rev. D 86 071502
[58] Bruckmann F, Endrodi G and Kovacs T G 2013 J. High Energy Phys. JHEP04(2013)112
[59] Bali G S, Bruckmann F, Endrödi G, Katz S D and Schäfer A 2014 J. High Energy Phys.

JHEP08(2014)177
[60] Bruckmann F, Endrodi G, Giordano M, Katz S D, Kovacs T G, Pittler F and Wellnhofer J 2017

Phys. Rev. D 96 074506
[61] Yamamoto A 2016 Phys. Rev. Lett. 117 052001
[62] Tiburzi B C 2013 Phys. Rev. D 88 034027
[63] Lujan M, Alexandru A, Freeman W and Lee F 2014 Phys. Rev. D 89 074506
[64] Freeman W, Alexandru A, Lujan M and Lee F X 2014 Phys. Rev. D 90 054507
[65] Niyazi H, Alexandru A, Lee F X and Lujan M 2021 Phys. Rev. D 104 014510
[66] Fukushima K, Ruggieri M and Gatto R 2010 Phys. Rev. D 81 114031
[67] Ferreira M, Costa P, Menezes D P, Providência C and Scoccola N N 2014 Phys. Rev. D 89 016002
[68] Tawfik A N and Magdy N 2014 Phys. Rev. C 90 015204
[69] Tawfik A N and Magdy N 2015 Phys. Rev. C 91 015206
[70] Tawfik A N 2016 J. Phys.: Conf. Ser. 668 012082
[71] Sanz-Cillero J J, Tawfik A N, Diab A M, Ezzelarab N and Shalaby A G 2016 Adv. High Energy

Phys. 2016 1381479
[72] Tawfik A N, Diab A M and Hussein M T 2018 J. Phys. G: Nucl. Part. Phys. 45 055008
[73] Tawfik A N 2017 Indian J. Phys. 91 93
[74] Tawfik A N, Diab A M and Hussein M T 2019 Chin. Phys. C 43 034103
[75] Chaudhuri N, Ghosh S, Sarkar S and Roy P 2020 Eur. Phys. J. A 56 213
[76] Tawfik A N and Diab A M 2021 Eur. Phys. J. A 57 200
[77] Chaudhuri N, Ghosh S, Sarkar S and Roy P 2021 Phys. Rev. D 103 096021
[78] DLMF NIST Digital Library of Mathematical Functions ed D W Lozier, B I Schneider, R F Boisvert,

C W Clark, B R Miller, B V Saunders, H S Cohl and M A McClain http://dlmf.nist.gov/, release
1.1.5 of 2022-03-15, F W J Olver, A B Olde Daalhuis, D W Lozier, B I Schneider, R F Boisvert,
C W Clark, B R Miller, B V Saunders, H S Cohl, and M A McClain, eds.

[79] Kasamanyan Z A, Gasparyan V M and Yuzbashyan E S 1985 Phys. Status Solidi b 130 K149
[80] Xiao D, Chang M-C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[81] Kohmoto M 1985 Ann. Phys., NY 160 343
[82] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[83] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[84] Hatsugai Y 1993 Phys. Rev. B 48 11851
[85] Hatsugai Y 1997 J. Phys.: Condens. Matter 9 2507
[86] Shockley W 1939 Phys. Rev. 56 317
[87] Tamm I 1932 Phys. Z. Sowjetunion 1 733
[88] Harper P G 1955 Proc. Phys. Soc. A 68 879
[89] Berry M V 1984 Proc. R. Soc. A 392 45
[90] Simon B 1983 Phys. Rev. Lett. 51 2167
[91] Vanderbilt D 2018 Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital

Magnetization and Topological Insulators (Cambridge: Cambridge University Press)
[92] Kohn W 1959 Phys. Rev. 115 809
[93] Heine V 1963 Proc. Phys. Soc. 81 300

35

https://doi.org/10.1103/physrevd.73.034503
https://doi.org/10.1103/physrevd.73.034503
https://doi.org/10.1016/j.physletb.2005.08.106
https://doi.org/10.1016/j.physletb.2005.08.106
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1103/physrevd.86.071502
https://doi.org/10.1103/physrevd.86.071502
https://doi.org/10.1007/JHEP04(2013)112
https://doi.org/10.1007/JHEP08(2014)177
https://doi.org/10.1103/physrevd.96.074506
https://doi.org/10.1103/physrevd.96.074506
https://doi.org/10.1103/physrevlett.117.052001
https://doi.org/10.1103/physrevlett.117.052001
https://doi.org/10.1103/physrevd.88.034027
https://doi.org/10.1103/physrevd.88.034027
https://doi.org/10.1103/physrevd.89.074506
https://doi.org/10.1103/physrevd.89.074506
https://doi.org/10.1103/physrevd.90.054507
https://doi.org/10.1103/physrevd.90.054507
https://doi.org/10.1103/physrevd.104.014510
https://doi.org/10.1103/physrevd.104.014510
https://doi.org/10.1103/physrevd.81.114031
https://doi.org/10.1103/physrevd.81.114031
https://doi.org/10.1103/physrevd.89.019902
https://doi.org/10.1103/physrevd.89.019902
https://doi.org/10.1103/physrevc.90.015204
https://doi.org/10.1103/physrevc.90.015204
https://doi.org/10.1103/physrevc.91.015206
https://doi.org/10.1103/physrevc.91.015206
https://doi.org/10.1088/1742-6596/668/1/012082
https://doi.org/10.1088/1742-6596/668/1/012082
https://doi.org/10.1155/2016/1381479
https://doi.org/10.1155/2016/1381479
https://doi.org/10.1088/1361-6471/aaba9e
https://doi.org/10.1088/1361-6471/aaba9e
https://doi.org/10.1007/s12648-016-0901-2
https://doi.org/10.1007/s12648-016-0901-2
https://doi.org/10.1088/1674-1137/43/3/034103
https://doi.org/10.1088/1674-1137/43/3/034103
https://doi.org/10.1140/epja/s10050-020-00222-9
https://doi.org/10.1140/epja/s10050-020-00222-9
https://doi.org/10.1140/epja/s10050-021-00501-z
https://doi.org/10.1140/epja/s10050-021-00501-z
https://doi.org/10.1103/physrevd.103.096021
https://doi.org/10.1103/physrevd.103.096021
http://dlmf.nist.gov/
https://doi.org/10.1002/pssb.2221300262
https://doi.org/10.1002/pssb.2221300262
https://doi.org/10.1103/revmodphys.82.1959
https://doi.org/10.1103/revmodphys.82.1959
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1103/physrevlett.49.405
https://doi.org/10.1103/physrevlett.49.405
https://doi.org/10.1103/physrevlett.71.3697
https://doi.org/10.1103/physrevlett.71.3697
https://doi.org/10.1103/physrevb.48.11851
https://doi.org/10.1103/physrevb.48.11851
https://doi.org/10.1088/0953-8984/9/12/003
https://doi.org/10.1088/0953-8984/9/12/003
https://doi.org/10.1103/physrev.56.317
https://doi.org/10.1103/physrev.56.317
https://doi.org/10.1088/0370-1298/68/10/305
https://doi.org/10.1088/0370-1298/68/10/305
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/physrevlett.51.2167
https://doi.org/10.1103/physrevlett.51.2167
https://doi.org/10.1103/physrev.115.809
https://doi.org/10.1103/physrev.115.809
https://doi.org/10.1088/0370-1328/81/2/311
https://doi.org/10.1088/0370-1328/81/2/311

	Charged particles interaction in both a finite volume and a uniform magnetic field: II. Topological and analytic properties of a magnetic system
	1.  Introduction
	2.  Lüscher formula-like quantization conditions with Dirichlet boundary conditions
	2.1.  Solutions of 2D magnetic Green's function with Dirichlet boundary conditions
	2.1.1.  Open boundary in -direction
	2.1.2.  Half open boundary in -direction
	2.1.3.  Hard wall boundary in -direction

	2.2.  Solutions of 2D magnetic zeta functions with Dirichlet boundary conditions
	2.2.1.  Generalized magnetic zeta function for open boundary condition in -direction
	2.2.2.  Generalized magnetic zeta function for half open boundary condition in -direction
	2.2.3.  Generalized magnetic zeta function for hard wall boundary condition in -direction

	2.3.  Energy spectrum of edge states vs bulk energy bands

	3.  Summary
	Acknowledgments
	Data availability statement
	Appendix A. Finite volume dynamics of a magnetic system in a plane
	A.1.  Finite volume reaction amplitudes of a magnetic system
	A.2.  Relation to Harper's equation


	Appendix B. Topological features of a magnetic system in a finite volume
	B.1.  -space and Brillouin zone
	B.3.  Topological properties of functions

	Appendix C. Analytic properties of finite volume solutions
	ORCID iDs
	References


